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ABSTRACT

This thesis examines the representation of dimensional units as prime numbers

to perform dimensional analysis within a computer-based model management system.

A computer program applies this concept to simple span structural steel beam design.

an engineering stress and strain problem. Most common applications of computers

manipulate only the numeric value of the measure of physical objects. The user

manually ensur - that data is processed according to the meaning of its units. Prime-

encoding of din.znsional units in this application provides a numeric method of

validating dimensional consistency in mathematical expressions for use on a

computer. This study is implemented in TEFA. a computer-based modeling system with

an embedded Prolog programming language. The beam design application

demonstrates that model representation using prime-encoding of dimensional units

simplifies the overhead required in data manipulation, and helps maintain

meaningful results in the numerical processing of data.
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I. INTRODUCTION

A OBJECTIVES

This thesis examines the representation of dimensional units as prime numbers

to perform dimensional analysis within a computer-based model management system.

A computer program applies this concept to simple span structural steel beam design.

an engineering stress and strain problem. Most common applications of computers

manipulate only the numeric value of the measure of physical objects [1: p. 4781. The

user manually ensures that data is processed according to the meaning of its units.

Prime-encoding of dimensional units in this application provides a numeric method of

validating dimensional consistency in mathematical expressions for use on a

computer [2: pp. 2-31. This approach has been implemented in TEFA, a computer -based

modeling system with an embedded Prolog programming language [31. The beam design

application demonstrates that:

Model representation using prime-encoding of dimensional units simplifles the

overhead required in data manipulation, and helps maintain meaningful results

in the numerical processing of data.

Bradley [4: pp. 403-4041 suggests that little attention has been given to

representing an,4 verifying data types used by computer programs. In most modeling

applications, a computer-based mathematical model of a physical process typically

manipulates the numerical portion of the model. However, the program may not be

capable of distinguishing qualitative differences between the data it manipulates,

making the program prone to errors. The goal of the modeler is to process numerical

data according to its meaning. including constraints placed upon the data by the model.

Bradley proposes that a system consisting of descriptions of model variables and rules

for manipulating them can address this problem.
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A simplified problem of structural steel beam design is used to demonstrate the

representation of dimensional units as prime numbers in dimensional analysis. Beam

design. in this thesis. is represented as a series of mathematical models describing the

physical phenomena of a load upon a beam. In this context. a mathematical model is

specified by inputs, objective functions, and constraints [5: pp. 2-71.

BL BENDING OF DUCTILE STEEL BEAMS

Parker [6: p. v] proposed that there is a continuing need to simplify structural

steel design procedures for some types of buildings. Architects and engineers,

henceforth referred to as users, require knowledge of engineering equations used for

structural steel beam design to effectively oordinate design and const: ion. This

includes validation of data available to the user for use in the appropriat ,quatlon.

The beam design example is used to examine dimensional validation typically

performed in an engineering problem.

Beam design begins with an examination of spanning and loading conditions of a

building structure. Parker 16: p. 45-481 states that loads supported by beams are

classified as either concentrated or distributed loads. A concentrated load is assumed to

act at a point since it extends over a relatively small a portion of the beam length as

shown in Figure 1.

I A!

Figure 1 Simple Beam with Concentrated Load

A distributed load on a beam extends over a substantial portion of the entire

length of a beam. Distributed loads are commonly referred to as untformly dtstributed.

The load has a uniform magnitude for each unit of length, such as pounds per linear

foot or kips (1000 pounds) per linear foot. as shown in Figure 2.

2



Figure 2 Simple Beam with Uniformly Distributed Load

The focus of this application is the design of a simple beam with a uniformly

distributed load. A general procedure for this case of beam design Is briefly outlined as

follows 16: pp. 130-132):

Step 1: Compute the load, W. in kips, that the beam will be required to support. If w

is the uniformly distributed load in kip/feet. and L is the length in feet. then

W=wL

Step 2: Compute the reaction, R. in kips:

R=W/2.

Step 3: Compute the maximum bending moment. M, in kip-feet:

M=WL/8.

Step 4: Determine section modulus in inches 3 by use of the beam formula where
Fb = 24 ksi. the allowable bending stress of A36 steel:

S = M/ Fb.

Step 5: Refer to the table of structural shapes, Properties for Designing, and select a
beam with a section modulus S equal to or greater than that required by Step
4. See Appendix A. The compact section criteria in the table should confirm
that bf / 2t, is equal to or less than 8.70, the limiting value for A36 steel
where Fb=2 4 ksi. The beam selected will be adequate for bending stresses
subject to checking of section classification (compact or noncompact) and Lc
or Lu controls.

Step 6: Check the beam for shear by confirming that the computed shearing stress
f, - V/A, in ksi is less than the allowable shear stress F,= 0.40 x 36 - 14.5
ksi for A36 steel. The static vertical shear on the beam. V in kips, is equal to
R The area of the girder web is determined by A. = d t,. in square inches,
where d is the depth of the beam in inches and t, is the web thickness of the
beam in inches.

Step 7: Verify that the maximum actual deflection caused by the loading is less than
the allowable deflection. Actual deflection is defined as follows:

A =(5xfxl 2 ) / (48xExc).

3



This sini,.ifies to:
A = .02483 L2)I d.

where A is in inches, f is in ksi. I = L x (12 in/ft) is in inches. E is the modulus
of elasticity of steel equal to 29,000 ksi, and c is the distance from the
neutral axis to the extreme fiber, where c = d/2 in inches. Allowable
deflection A. in inches. is equal to 1/360 of the span or (L x 12)/360. If the
actual A exceeds the allowable A, deflection may be solved for I. moment of
inertia where I is in inches 4. required to limit A to the allowable value. This
part of the procedure will not be attempted in this study.

Appendix B provides an example of a beam design problem using the above

procedure. Appendix C provides a reference of general nomenclature used by the

problem, and Appendix D provides a list of the abbreviations referenced in the design

procedure. The purpose of the beam design application is to verify the dimensional

consistency of the required mathematical expres.€ ns. The application also solves

the expressions. recommending a wide flanged steel beam with a physical

configuration fulfilling the design criteria of the problem.

C. DIMZNSONAL ANALYSIS OF BEAM DESIGN

Beam design illustrates typical difficulties of analyzing engineering expressions.

Unit conversions are often required, as in the case of determining section modulus. The

computed value for S. using the beam formula S = M/Fb, must be in inches3 for

comparison with section modulus values of the beam table. If the value of M is entered

with dimensional units of kip-feet then M must be converted from kip-feet to kip-

inches to usefully represent S in inches 3. The dimensional units of Fb c;- oe

represented as either ksi, kip/inches2 . or 1,000 pounds/inches 2 , depending upon how

data is presented to the user, or upon the user's preference. With these problems in mind.

a fast, accurate, and automated system which performs checks of dimensional

consistency is desirable.

D. o LIN OF TIS PAPER

In Chapter II. the concepts of measurement. physical algebra. dimensional

analysis and application to modeling languages are briefly be discussed. Chapter III

examines laws of dimensional consistency necessary to perform dimensional analysis

of mathematical expressions. Prime-encoding of dimensional units is introduced for

the purpose of performing dimensional analysis. Chapter IV presents the application of

dimensional analysis and prime-encoding of dimensional units to the steel beam

4



design problem within a modeling language. Chapter V summarizes the results of the

study and presents recommendations for further study. Appendices A through D

provide a sample beam design problem with associated beam tables, nomenclature and

abbreviations. Appendices E and F contain prime-encoded dimensional units and rules

for determining dimensional consistency. Appendices G through J contain the beam

design application, support processes and sample output. Appendix K describes the

computer platform used to develop the application.

5



IL BACKGROUND

A. MEASUREMENT AND PHYSICAL ALGEBRA

Massey [7: p. 11- 121 states Lhat measurement is basically a comparison of things

of the same kind. Measurement uses a unit defined as a standard amount of a quantity

to compare with another of the same kind of quantity. The comparison is a magnitude

with a numeric and a unit component. For example, to express the length of an object, a

number quantifies the number ( tandard .nits equal to the length of the o*ject. and a

unit Identifies the standard am( it of that quantity.

The algebra used to describe describe physical objects, as suggested by Massey 17:

pp. 12-131, is different from the algebra of pure mathematics. The algebra of pure

mathematics, or ordi: iry algebra, is the expression of relations among numbers,

though symbols are often used to represent numbers. Physical algebra describes

relations among the magnitudes of physical quantities such as force, velocity, mass,

energy, and so on. Physical algebra describes how the magnitude of one quantity

depends on the magnitude of the others. Mathematical operations of addition,

subtraction and comparison are restricted to quantities of the same kind. For example,

a mass and an interval of time cannot be compared, but one mass and another mass

can.

Massrv 17: p. 131 states that physical algebra expresses relations between

magnitudes of the same kinds of physical quantities. Magnitudes of the same kind of

physical quantities are also expressed in terms of the same dimensional unit. When

both sides of an equation have the same units, the equation Is dimensionally

homogeneous.

Relations in physical algebra. Massey [7: p. 131 asserts, must have two kinds of

consistency. First, there is the quantitative relation of ordinary algebra in which both

sides of an equation are compared in numerical magnitude. Second, there is a

qun1ttative relation such that terms that are added, subtracted, or compared represent

th ime kind of quantity. Ordinary algebra is basically a means of comparing

nu 'rs. wherea hiysical algebra is a means of comparing the magniti. es of similar

qt tes.

6



B. DIMENSIONAL ANALYSIS

Langhaar [8: p. 1-41 describes dimensional analysis as a method of deducing

information about physical phenomena if it can be described by a dimensionally

correct equation. Scientific reasoning of the physical world is based on concepts of

various abstract entities, such as force, mass, length. time, and so on. Each of these

entities, or dimensions. may be assigned a unit measurement and is considered to be

independent of the others.

Bhaskar (9: p. 73-741 states that dimensional analysis has been used in

engineering for purposes of modeling and similitude. With dimensional analysis.

reasoning about a system is possible without explicit knowledge of the physical laws

that govern it. The model of the system requires knowledge of only relevant physical

variables and their dimensional representation. Dimensional representation of

physical variables contains a significant amount of knowledge.

Physical representations of variables, as stated by Bhaskar 19: p. 73-741 have both

numerical and symbolic components. The numerical component is the value of a

variable measured in a system of units. Reasoning about the numerical component

represented by a physical variable is constrained by the physical context the value may

take. The symbolic component in qualitative physics is the dimensional

representation of the physical variables. For example, in the dimensional notation of

physics. force is usually represented as pounds x feet x seconds -2 . Dimensional

representation of a variable is also constrained by a set of laws. Dimensional

homogeneity is the most familiar of these. One of the most widely used results of this

concept in dimensional analysis is Buckingham's fl-Theorem, proved by Buckingham

110: pp. 345-3761 in 1914. This theorem is used to establish the number of independent

dimensionless numbers required to describe a given physical context

[I 1: pp. 3918-3919). Langhaar 18: p. 181 explains that according to Buckingham's [I-

Theorem, an equation that relates dimensionless products is dimensionally

homogeneous. Stated another way, the form of the equation is independent of the

fundamental units of measurement.

C. DIMENSIONAL ANALYSIS USING A COMPUTER

Various computer-algebra systems and executable modeling languages 11: p. 4781,

131. 141. (Il1, [121, 1131 have been proposed to include symbolic physical units in computer

7



calculations. These techniqu offer automatic lion of dimensionally

inhomogeneous formulas and Ltomatic conversion oi ,nconsistent units in a

dimensionally homogeneous formula.

Stoutemyer 11: p. 478] states that attempts to include physical units in

mathematical expressions are sometimes abandoned since conventional programming

languages generally deal with pure numbers rather than physical quantities. The user

of the program must manually check data for its dimensional type to ensure that the

results of the computation are valid. Errors of dimensional consistency are difficult to

prevent and detect in traditional programming languages.

Stoutemyer [1: p. 4781 suggested that since many programming languages have the

ability to declare the precision of numerical variables and whether it is fixed or

floating point, it should be possible to extend this technique to the declaration of

variables such as units: i.e.. meter, mile/hour. dollars. etc. A modeling language

translator then checks expressions and assignments to variables for .Amensional

consistency relieving the user of the tedious, error-prone unit conversion process.

D. ALTERNATE METHODS

There are several computer programs incorporating dimensional analysis.

Though they share the similar goal of validating dimensional consistency of a

mathematical expression, they are quite different in their approach. The survey of

alternative methods presented below is not exhaustive, but illustrates three different

techniques of representing ati extended data type ,ntaining numerical and

dimensional information.

The first method, as described by Barnes 114: p. 3-141, is a database representation

using a semantic type checking system for use with relational databases. The unit

component of a variable, or semantic information, is associated with its numerical

component in a data dictionary. This extended numeric data type, defined by concept,

quantity and dimension, consists of a value description and a semantic description.

The value description of the data type consists of a number and its unit of measure. The

semantic description consists of a quantity and a concept. which is an object attribute

possessing that quantity. Database queries are verified for dimensional consistency

and dimensional units are converted across systems of measurement as necessary.

Concepts are used to construct a concept 4 -rarchy ensuring that queries are consistent

8



with the semantics of the database. This abstract numeric data type is used with the

relational data model for dimensional validation and unit conversion.

Another variant of a computer-based dimensional analysis system proposed by

Hirschberg [15: p. 2-91 uses the Buckingham Pi-Theorem 1101 to order sets of equations

by their importance. This system is implemented in SYMBOLANG. a list structured

symbol manipulator based in the FORTRAN programming language. The symbol

manipulator operates on a set of symbols rather than numbers. For example, a symbol

manipulator multiplies N+1 by N-I to obtain N2-1. A list structure stores and

manipulates data by defined relationships. Solution of the Pi-Theorem involves the

formation of Pi-Terms ordering the equations by their importance. Once a Pi-Term is

formed, the dimensionless set of terms is solved as a linear set of equations. The

numeric solutions are then paired with their associated parameters. Hirschberg

proposed that an extension of this work would include checking Pi-Term solutions

against a set of well known dimensionless numbers. Data for the parameters would

serve as input producing numeric answers. Hirschberg considers the speed of the

computer an important advantage because it generates many permutations of

equations yielding a large number of solutions, which can be solved by regression

analysis for a best fit solution.

Stoutemyer [1: pp. 479-4801 proposed yet another method using a computer-based

symbolic algebra system to process dimensional units. The computer algebra technique

is implemented in MACSYMA. developed by the MATHLAB Group. The method extends

a programming language's ability to declare not only numerical variables, but also

variables with a dimensional unit component such as meters. miles/hour, dollars. etc.

This technique detects dimensionally inconsistent formulas and converts inconsistent

units within a dimensionally homogeneous formula. A translator checks expressions

and variables assignments for dimensional consistency.

E. DIMENSIONAL INFORMATION IN MODELING LANGUAGES

Having identified the need for verifying dimensional consistency of an equation

describing physical relationships, it would be useful to have a flexible, easy to develop

method of representing mathematical expressions describing the physical situations.

Fourer suggests 113: pp. 143-1551 that algorithmic solutions to solve problems within

computer programs are explicit rather than symbolic. They are designed for

9



convenience and efficiency of handling data in a computer program rather than for

clarity to the modeler. As a result of this approach, verificstir nd modification of the

modeler's intentions become a problem of debugging computer programs. In addition.

the description of the problem is highly dependent upon the form of the algorithm

chosen to represent it.

Fourer 113: pp. 155-1631 has argued modeling languages offer several advantages

over algorithmic descriptions of a problem. The modeling language is not a

programming language. but a declarative language that describes the modeler's

intentions in a form that can be interpreted by a computer. The ability to describe the

problem in the form of its matherr tical model provides inc ndence of any

particular algorithmic form. Verific -1 is reduced to the tab debugging the

modeling language's representation o. .e problem. Bradley 112: p. 271 states that

present research focuses on the use of modeling languages as executable . -nputer

programs. In general. modeling languages can be used to implement type caiculus for

dimensional systems. A variable in the model is assigned a type that consists of its

concepts. quantities, and units of measurement. This representation permits checking

the composition of expressions, and defining a hierarchy of concepts with inheritance

of properties.

10



I. DIMENSIONAL ANALYSIS

A. INTRODUCTION

Dimensional analysis. as asserted by Massey 17: p. 1081 and Langhaar 18: p. 11,

cannot by itself provide a complete solution to a problem. but can provide a means for

simplifying complex problems. Laws of dimensional consistency provide a means to

check the validity of mathematical expression. Dimensional arithmetic provides a way

to manipulate dimensional units. Together with prime encoding of dimensional units

terms, as described by Bhargava 121 it is possible to develop a numeric process for

executing these techniques in a computer program.

It is shown by Bhargava 121 that dimensional manipulation can be viewed as

numerical arithmetic by recognizing the nature of dimensional arithmetic. Prime

encoding supports this by representing each fundamental dimensional unit as a prime

number. By the unique factorization theorem from number theory, numeric arithmetic

applied to the prime encoding system follows the laws of dimensional arithmetic.

B. DDMNSIONAL ARITHMETIC OF UNIT MEASURES

Dimensional arithmetic provides a technique for manipulating the dimensional

component of information [2: p. 31. Dimensional arithmetic operates on dimensions in

a similar manner to the way arithmetic operates on numbers.

A variable in a mathematical model may be defined by the quantity it measures

and its dimensional unit. For example, in the beam problem. the section modulus of a

beam. S in inches 3 . is equal to moment, M in pound-inches. divided by bending stress of

steel. Fb in pound/inches 2 :

S = M / Fb.

The quantity of the variable generally has a base unit of measurement and may

sometimes contain other dimensional units [4: p. 41. These units are related to each

other by laws of conversion within a system of measurement, such as one foot is equal

to 12 inches. Dimensionless quantities without units, such as constants or ratios. may

be represented simply by the number 1.

11



The International Metric System, SI. illustrates a standar i system of seven

fundamental quantities and base dimensional units 1161.

UNITS FOR THE SI SYSTEM OF MEASURES

Quantity Measured Base Unit Other Units
Lergth Meter Kilometer. Centimeter
mass Kilogram Gram. Milligram
T"ne Second Hour, Minute
Ampere Electric Current
Temperature Kehin Celsius, Fahrenheit
Luminous Intensity Candela
Amount of Substance Mole

Dimensional units 12: p. 5-61 may be classified as fundamental or derived units. A

unit is considered to be a fundamental unit if it is not a ict of oti. . units. A derived

unit is product of other units.

Validation of dimensional information, as stated by Bhargava [2: pp. 3-61, reqtires

dimensional manipulation which supports dimensional simplification id

verification of the dimensional equivalency of expressions. Dimensional

simplification reduces a mathematical expression to its simplest form. For example,

the expression for section modulus, (pound x Inch)/(pound x inch 2), simplifies to inch 3 .

Verification of dimensional equivalency requires recognition that one expression is

dimensionally equivalent to another. For example. (pound x inch)/(pound / inch2) is

dimensionally equivalent to pound x inch x (1/pound) x (1/ inch) x (1/inch).

In summary, t! following laws of dimensional consistency can be used for

dimensional validation of expressions [2: pp. 6-71:

1. Two expressions may be added or subtracted only if they are dimensionally
equivalent.

2. Two expressions may be compared for equality or inequality only if their
dimensions are equivalent.

3.. vo expressions may be multiplied regardless of their dimensions.

4. An expression can be inverted regardless of its dimension.

5. The exponent of an expression must be dimensionless. It may be a fraction only
if each dimensional unit in the expression has a power that is a multiple of that
fraction, or if the expression is dimensionless.

6. Transcendental functions can be applied only to dimensionless expressions.

12



Dimensional arithmetic [2: p. 71 is used to perform the manipulations described

abo,'J. The dimension of the sum or difference of two expressions is the same

dimension of either only if the expressions have equivalent dimensions. If the

expressions have different dimensions, the result is not defined. The dimension of the

product or quotient of two expressions is the product or quotient of the dimensions of

the two expressions respectively. An expression without a dimension has a dimension

equal to 1. This is the dimensional multiplication identity. The dimension of an

expression's exponent is the exponent of its dimension.

Q PRDME-ENCODING OF DIMENSIONS

The ability to represent dimensional unit terms as prime numbers provides a

simple way of describing mathematical expressions within a computer -based modeling

system. Dimensional unit terms can be uniquely represented as prime numbers, and

derived dimensional unit terms can be represented by a combination of prime numbers.

12: pp. 9-101 The prime encoding of dimensional units can be illustrated by arbitrarily

assigning fundamental dimensional units in a one-to-one correspondence with prime

numbers. Since the number 1 is used as an identity, the sequence of prime numbers for

this example will begin with 2. The numbers 2 and 3 are assigned to dimensional units.

pound and inch. respectively.

Consider the expression for section modulus from the beam desigi. problem:

S = M / Fb

or in dimensional unit terms only.

inches3 = (pound-inches) / (pounds/ inches2)

where S is section modulus in inches3, M is moment of the beam in pound-inches, and

Fb is bending stress in pounds/inches 2 . The dimensional terms of M/ Fb simplify to

inches 3. which verifies dimensional consistency. By use of the unique factorization

theorem, also known as the fundamental theorem of arithmetic, it can be shown that

dimensional equality is equivalent to numeric equality when the unit terms are

expressed as primes numbers. 12: p. 10-111 For example. by substituting prime numbers

for the dimensional units of M and Fb, the expression for section modulus becomes:

23 = (2x3) / (3/2 2). or 8= 8.

13



M. SUMMARY

The application of prime number encoding of dimensional units, as proposed by

Bhargava 12: pp. 1 - 121, suggests a method for performing dimensional manipulation.

Prime numbers are arbitrarily assigned to a set of fundamental dimensional unit

terms. The prime number 1 is reserved as the identity for multiplication. Dimensional

multiplication and division are treated as numeric integer multiplication and division.

Dimensional addition and subtraction are simply checked for equivalency. This yields

a relatively simple method of dimensional manipulation. In summary. dimensional

consistency and validity of an expression may be checked by computing the

dimensional value of an algebraic e: .ession. and by r uting the numeric value of

the dimensional expression.
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IV. IMPLEMENTATION

A. MODEL DEVELOPMENT

The beam design problem incorporates dimensional analysis through use of a

modeling language. Modeling languages support development, documentation, and use

of mathematical models [3: p. 11. [13: p. 1441. The modeling language chosen for this

problem. TEFA [3]. can represent mathematical models consisting of definitional

equations. A modeling language approach permits concepts to be divided into modules

easily shared with other applications. For example, a measurement system consisting

of prime-encoded fundamental dimensional units, and the rules for dimensional

consistency may be easily incorporated into other models describing other kinds of

physical phenomena. See Appendices E and F [ 171.

Model development in a modeling language is similar to development of other

abstract mathematical models. The purpose and the objectives of the model are clearly

defined. Relationships between variables are stated mathematically. The

mathematical models describing beam design can be conceptualized using a framework

of variables and the mathematical relationships between them.

B. BACKGROUND

A practical outcome of the prime encoding of dimensional units, as suggested by

Bhargava 12: pp. 2-41, 1171, is a series of computer-programmable statements for testing

dimensional consistency of mathematical expressions. Dimensional consistency is

verified by performing the numerical equivalent of dimensional manipulation

described by the expression. If an expression Is dimensionally valid, the model

described by the expression is dimensionally consistent. If the model is dimensionally

consistent the test outlined in Appendix F returns a logical value of true. Otherwise. if

the model is dimensionally inconsistent, the test returns a faLse value.

Numerical operations necessary to perform a dimensional consistency test

requires recognition of dimensional operators. It also requires association of the

dimensional unit terms with prime-encoded equivalents. The prime-encoded terms are

operated upon according to the rules of dimensional manipulation. To exploit the
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prime number representation of dimensional units, a function is defined which accepts

a dimensional expression and returns a numeric value. See Appendix G. This value is

computed from the dimensional operation on the prime-encoded dimensional unit

terms:

numeric funcUon(dimensional expression) -- numeric value.

Assuming a database of prime values for fundamental units, it is possible to

relate the prime-encoding of dimensional units. To implement the concept of prime-

encoding of units, a table is constructed with fundamental dimensional unit terms with

arbitrarily assigned prime numbers. See Appendix E 117: pp. 120-1261. The prime

number is assigned to the dimensional uri.- by defining an additional rule for the

numeric function:

numeric function(unit. prime number) -- unit code(system. prime number, unit).

The numeric function returns the prime number indexed by the dimensional unit term.

For example, assume that unit code(english measurement system. 2. inch). By numeric

function(inch, prime number) the prime number value of 2 is returned.

This numeric function also includes rules for dimensional manipulation of the

prime encoded dimensional units. To illustrate a general case of how this function

performs dimensional addition:

numeric function (expression, nd.
numeric function(expression 2. n2),
n I =n1.
numeric value is n,
--+ numeric function(expression, + expression 2, numeric value).

The numeric function evaluates the expressions for the prime number equivalent of

their dimensional units. Note that this dimensional addition rule for the numeric

function obeys the dimensional consistency laws. In a similar fashion, the remaining

rules for subtraction, multiplication and division of dimensional unit operations are

developed. See Appendix G.
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An additional tool is necessary to process dimensional expressions into a form

that can be analyzed for consistency or validity. This tool is a list function which

processes each term of an expression. For example, a list processor for adding

dimensional units where "+" is the dimensional addition operator has a form:

sum list([element I elemen 21, answer)
list(element i . n).
list(element 2 , n2),

answer is n, + n2 .

The term. element 2. can also represent a list. This operation continues recursively until

all elements of the list have been processed.

C. EXAMPLE: BENDING OF DUCTILE STEEL BEAMS

A primary objective of beam design is to make a preliminary selection of a beam

with the smallest section modulus larger than the section modulus computed by the

beam formula:

S = M / Fb. such that Fb= 24 kip/in2 for A36 steel.

To illustrate the implementation of this problem into a modeling language, the

beam formula is expressed as a definitional equation:

definitional expression(compute section modulus. S +- (M * 12) / Fb).

The variable M. computed moment of the beam, is assumed to be defined in

dimensional units of kip-feet. The definitional expression includes the conversion of M

into kip-inches.

Qualitative information about the variable is described within a local variable

declaration within the mathematical model. This declaration provides the variable

name, the model name in which the variable is used, the local variable name within the

model, information on whether the variable is computed internally or externally to the

model, and also the storage type of the dimensional units of the variable. For example:

local varable(computed section modulus, compute section modulus. S. inch3).
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This information is mapped to a declaration to be represented by the variable. This

notion is referred to as quiddity, or the essential quality of the variable. In the example

of section modulus, this information tells the modeler that moment is a derived

dimensional unit of inch 3 :

quiddity variable(computed section modulus. volume. inch 3 ).

Information defined in these expressions can be shared with other models in a

knowledge base. The measurement system in Appendix E is referenced to establish

prime encoded dimensional units. Statement of the laws for dimensional consistency

in Appendix F is referenced to verify the dimensional consistency of the mathematical

expression defining section modulus for a beam. This verifies that the units in the

mathematical expression are consistent with the way they are stored in the model. See

Appendices I and J 131.

D. SU MART

The development of a model which incorporates dimensional validation, as

described by Bhargava 13: pp. 7-81. consists of defining the mathematical equation. its

variables and dimensional units, encoding the dimensional units with a set of prime

numbers, and finally evaluating the numerical equivalent of the expression by of the

laws defini- limensional consistency 1ach equation of ti )eam design process is

expressed a A mathematical m 1el cc ,isting of mathemau, ally defined -quations

and variables. The model i:- ,-onci- .v des ,ibed and documente . simplifying aLs use Oy

other models. Dimensional consistency is checked by the prime-encoding of the

definitional equation's dimensional units. This technique verifies that variables used

by the definitional equation are dimensionally valid.
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V. RECOMMENDATIONS AND CONCLUSION

A. CONSTRAINTS

An important constraint of testing for dimensional consistency, as outlined by

Bhargava 12: p. 151. is that the application selected for modeling must be subject to the

standard laws of dimensional consistency. The beam design problem requires only

simple substitution of prime-encoded dimensional units for validation of the subject

mathematical expressions. The dimensional unit of the expressions describe physical

measurements. A set of rules for the concept of "steel beam". or prime-encoding of "steel

beam" types was not considered necessary. Abstract concepts. such as those suggested by

Bradley [12: pp. 279-2801, were not required by this problem to obtain a solution, so they

were not explored in this study.

In addition, Dym 118: p. II states that the use of a model also places another

important constraint on the problem solving process. Models are simply a

mathematical representation of objects and processes. A mathematical model should

not be confused with the reality of the physical problem. Mathematics performed in the

context of a model are an abstraction of the actual physical problem which the model

describes.

A constraint of the application itself is that it describes only simple span steel

beams with a uniformly distributed load. Parker 16: pp. 45-84 proposes eight general

cases of beam loading including concentrated loading, non-uniformly distributed

loading, and cantilevered beams. Each case requires that different moments, shear, and

deflections be considered for analysis. Stress parameters were considered only for A36

steel. Though A36 steel is the most commonly used material in steel frame building

construction, there are several other steels available, each with their own allowable

stress values. Additionally, only a small subset of fifteen W-shapes was considered for

testing of the model. There are over sixty W-shapes available, as well as S-shapes. M-

shapes, channels, compound angles, and bar-Joists which can serve the same general

function of a beam.

This system is implemented in Prolog and runs on Apple Macintosh II series of

computers. TEFA 131. the model management system, is implemented in Prolog. See

19



Appendix K for additional inlormation on the hardware and software utilized in this

study.

B, RECOMMENDATIONS

The steel beam design application could be extended to overcome the constraints

of the initial model. Additional models may be incorporated into the application

covering other beam span conditions. This system could also be applied to an

application serving as an engineer's aid In equation checking. This technique also has

uses in fields such as operations research and finance for analyzing and checking

parameters of various optimization models.

It would also be worthwhile to examine th _asibility of using dimensional

analysis and prlme-en.coding of dimensional uni n the background of another

application, transparent to the user. For example. , CAD (Computer Aided Design)

system may contain an expert system integrated into the application, providing

interactive equation checking and dimensional validation.

This concept of dimensional checking may also be applied to other languages.

such as conventional programming languages. It would be useful to examine the

program structures necessary to parallel prime-encoding techniques of the Prolog

language and dimensional consistency laws. This method may also be adaptable to

spreadsheets by use of look-up tables and conditional statements describing the laws of

dimensional consistency.

C. CONCLUSION

Bhargava 12: p. 141 points out that dimensional manipulation can be performed

symbolically by existing symbolic mathematics programs. Bhargava proposes that the

prime-encodng method of dimensional manipulation performs as well as other

symbolir methods in retaining information about manipulated symbols. Units of

measurement can be reconstructed from the numeric value representing the unit. This

method is easy to implement in almost any programming language, making

dimensional analysis possible in a wide range of applications. Since this system is

designed to validate dimensional consistency of expressions, its application extends

beyond numerical processing and d se searching. The problems of dimensional

consistency and dimensional validlt%- mndled by the system so that the user is free

to use a particular model across . systems. The validity of the expressions
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contained in the models are checked, and unit systems are converted as necessary to

permit the passing of parameters between models. This ability addresses the long range

problems of larger databases and maintenance of consistent data.

This thesis illustrates the feasibility of providing a computer-based numerical

method for validating the dimensional consistency of a selected set of engineering

equations. A fast, automatic method of validating the dimensional consistency of

equations is demonstrated. Though one motivation of this system was to show the

ability to convert units from one measuring system to another, it was not examined in

this thesis. However, this system shows the usefulness of implementing a prime number

encoding scheme for representation of units of measure in mathematical expressions

using the inheritance properties of Prolog-type data structures. If governing laws for

manipulation of dimensional formulas are not used, contradictions may result; for

example. in 3 = lb x in 2 [21. 1191. Such contradictions can be avoided by using standard

conventions and techniques of analyzing dimensions recognizing the origin and

derivation of formulas. Adherence to dimensional validation provides better

understanding of models, and origins of mathematical expressions, and improvement

of model representation.
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APPENDIX A

PROPERTIES FOR DESIGNING

Selected Wide Flange Sections
W SHAPES

16: p. 161

tw

Elastic Compact
Flange Web properties section

Depth Width thickness Axis X-X criteria
Designation d (in.) bf (in.) t. (in.) S (in.

3
) bf/ 2 tf

WlOX89 10.88 10.275 0.615 99.7 5.15

WIOX60 10.25 10.075 0.415 67.1 7.38
WlOX49 10.00 10.000 0.340 54.6 8.96

W1OX45 10.12 8.022 0.350 49.1 6.49

WI0X39 9.94 7.990 0.318 42.2 7.75

W10X33 9.75 7.964 0.292 35.0 9.20
W10X25 10.08 5.762 0.252 26.5 6.70

WlOX21 9.90 5.750 0.240 21.5 8.46

WSX67 9.00 8.287 0,575 60.4 4.44

W8X40 8.25 8.077 0.365 35.5 7.24
WBX31 8.00 8.000 0.288 27.4 9.24

W8X28 8.06 6.540 0.285 24.3 7.06
W8X24 7.93 6.500 0.245 20.8 8.17
W8X20 8.14 5.268 0.248 17.0 6.97

W8X17 8.00 5.250 0.230 14.1 8.52
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APPENDIX B

EXAMPLE OF BEAM DESIGN PROCEDURE

Parker [6: pp. 127-1321 describes a general design procedure for a simple span.

laterally supported beam with a uniformly distributed load. The beam is designed with

A36 steel. The allowable deflection is limited to 1/360 of the span. Loading of the beam

is uniformly distributed.

Step 1: Compute the loads the beam will be required to support. For example. in a

portion of a floor framing plan in Figure 1, a simple beam spans a distance

of L = 10 feet and supports the floor a distance of 5 feet to either side of the

beam. The floor load is 440 lb per sq ft. including the weight of the beam and

other construction.

T Beam Column

A A

10 -

Figure 1 PORTION OF A FRAMING PLAN
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The uniformly distributed load per linear foot. w. including the weight on

the beam. is:

w = 5 ft x 440 lb per sq ft = 2,200 lb/ft - 2.2 kip/ft.

The total uniformly distributed load, designated by W is the uniformly

distributed load. w. times the span of the beam. L:

W=wxL.

or W = (2.2 kips/ft) x (10 ft) = 22 kips.

Step 2: Compute the reactions. Since the beam is syn trically loaded as shown in

Figure 2., R, = R2 = 22 kips/2 = I I kips.

" 'll ll WdI _  = 22 kips

11l~ll kip iI111ips

t'igure 2 REACTION DIAGRAM

Stt: Compute the maximum bending moment:

M = WL/8 = (22 kips x 10 r/8 = 27.5 kip-ft.

Step 4: Determine the requred section modulus by use of the beam formula

S = M/F b. where M is the bending moment in inch-pounds or kip-inches and

Fb is the allowable bending stress In psi or ksl respectively. Since full

lateral support is provided, the allowable bending stress of A36 steel is Fb =

24 ksi if a compact section is used. (ksi = kips per square inch). Then

S = M/Fb = (27.5 kip-ft x 12 in per ft)/24 ksl = 13.75 in3 .
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Step 5: Refer to the tables of structural shapes in Appendix A that give properties for

designing. and select a beam with a section modulus equal to or greater than

that required by Step 4. The beam selected will be adequate for bending

stresses subject to checking of section classification (compact or

noncompact) and Lc or L, controls. Referring to Appendix A, [6: p. 161. we see

that a W8X17 has a section modulus of 14.1 in 3. and we accept this as a trial

beam. The compact section for the beam selection is checked. The compact

section for A36 W-shapes is defined by AISC to be one in which the width-

thickness ratio of the projecting compression flange, half-flange. does not

exceed 52.2/qFy. The limiting value of the width-thickness ratio of the

compression half-flange is computed to be 52.2/36 = 8.70 for A36 steel

16: p. 221. The compact section criteria in Appendix B shows that

bf/2t w = 8.52 for the W8X17 section. Since this value is less than 8.7. the

limiting value for A36 steel, the section is compact and the value of Fb = 24

ksi used in Step 4 is confirmed.

Step 6: Check the beam for shear by comparing the computed shearing stress

fv = V/A, with the allowable Fv. Checking the shear stress requires reference

to Appendix A. which shows that d = 8 in and t, = 0.23 in for the W8X17.

Then since V = 11 kips:

fv = V/A = 11 kips/(8 in x 0.23 in) = 5.97 ksi.

where A, = area of girder web in sq in.

This value is less than the allowable 14.5 ksi. so the W8X17 is acceptable for

shear.

Step 7: Compute the maximum deflection caused by the loading and compare it with

the allowable delta. A. If the computed delta exceeds the allowable, the

deflection formula may be solved for I required to limit delta to the

allowable value 16: p. 831. A beam section with an adequate moment of

inertia may then be selected from the tables giving properties for designing.

The allowable deflection is stated in the data as 1/360 of the span and is
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(10 ft x 12 ft per in)/360 or 0.. in. S t the allowable ding stress for

this beam is 24 ksi. the following expression may be used to determine

actual deflection [6: pp. 112-1 13, 1311:

A= (5 x fbx 12) / (48 x E x c) = (0.02483 L2 ) / d.

A = (0.02483 x 102) / (8) = 0.31 in.

The value is less than the allowable 0.33 in. so the W8X17 is acceptable for

this loading. This expression is true only for simple steel beams with

uniformly distributed loads. The extreme fiber stress. fb, is 24,000 psi for

A36 steel. and E = 29.000.000 psi.
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APPENDIX C

NOMENCLATURE

A partial selection of nomenclature and terms [6: pp. 2-51

AISC American Institute of Steel Construction. Inc.

Aw  Area of girder web (sq in)

E Modulus of elasticity of steel (29,000 kips per sq in)

Fb Bending stress permitted in the absence of axial force (ksi or psi)

F, Allowable shear stress (ksl or psi)

Fy Specified minimum yield stress of the type of steel being used (ksi or psi). As

used in AISC (American Institute of Steel Construction) Specification, "yield

stress" denotes either the specified minimum yield point (for those steels that

have yield point) or specified minimum yield strength (for those steels that do

not have a yield point).

I Moment of inertia of a section (in4)

L Span length (ft)

Lc  Maximum unbraced length of the compression flange at which the allowable

bending stress may be taken at 0.66FY (ft)

L,, Maximum unbraced length of the compression flange at which the allowable

bending stress may be taken at 0.60 FY (ft)

M Moment (kip-ft or kip-in)

R Reaction (kips)

Maximum end reaction for 3-1/2 in. of bearing (kips)

S Elastic Section Modulus (in3 )

V Statical (vertical) shear on beams (kips)

W Total uniform load, including weight of beam (kips)

br Flange width of rolled beam or plate girder (in)

c Distance from the neutral axis to extreme fiber of beams (in)

d Depth of beam of plate girder (in)
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fb Computed bending stress (ksi or psi)

f, Computed shear stress (ksi or psi)

I Actual unbraced length (in)

L Wb thickness (in)

A Beam deflection (in)

w Uniformly distributed load per lineal foot (kip/lin ft)
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APPENDIX D

ABBREVIATIONS

16: p. 51

cu ft cubic foot

cu in cubic inch

ft foot

ft-lb foot-pound

in inch

in-lb inch-pounds

kip 1000 pounds

kip-ft kip-feet

kip-in kip-inches

ksf kips per square foot

ksi kips per square inch

lin ft linear foot

lb pounds

lb per cu ft pounds per cubic foot

lb per lin ft pounds per linear foot

psf pounds per square foot

psi pounds per square inch

sq ft square foot

sq in square inch
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APPENDEX E

wAAS 8E

117: pp. 120-126]

/* measures.p created by hemant bhargava 1-20-89 0/
/* Reference: Beyer's Mathematical Handbook*/
/*measurement system. dimension. base unit, symbol, others 0/

P Base units are fundamental or primar.- its. */
/* Units defined in terms of base units ar i1ved units. '

P base-unit(measurement-system. dimension. base-unit..symbol).1
base_unit(si.length.mt).
base..unit(si.mass.kg).
base unit(si. time, scC).
base...unit(si. current. amp).
base...unit(si.temperature.degK).
base unit(si. 'luminous intensity .cd).
base-unlt(si.'amount of substance'mol).
base unit(si. currency, dollars).
base..ynit(si.volume.gal).

base-u nit(english. length,. ft).
base unit(engllsh.mass.lb).
base,,unit(english .tlme.sec).
base~unit(english~current.amp).
base,.urit(english .temperature.degK).
base_,,unit(english,'luminous intensity'.cd).
base unit(engish. 'amount of substance.ol).
base.,urnit(english.currency.pound).

/* unit( measurement-system. dimension. unit-.symbol). 0/
unlt(si.length.mt).
unit(si.length.cm).
unit(si~length,km).
unit(si.length.mn).

unit(engish~length.ft).
unit(english.length.in).
unit(english.length.yd).
u nit(english. length, mi).

unit(si.area MtA2).
unit(si~volume.mtA3).
unit(si~volume .lt).
unit(st,voiume~gal).
unit(si~volume,qt).

unit(sl. mass. kg).
unit(si.mass.gm).
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unlt(sI.mass.rng).
unit(sl.rmass, tons).
u nit(sl, mass, ltons).

unit (engl ish.rmass.lbN.
"unit(engllshrmass. oz).
"unit(english, mass. stons).

unit(_,time. see).
unit(-. time. hr).
unit(-, time, min).
unit(_, time. day).

unit(-,temperaturedegK).
unit(_.temperature, degC).
unit(-,temperature. degF).

unlt(sl.area.MtA 2).
unlt(sl.volume MtA3).
unit (si.voiume.lIt).
u nit(engiish. areaAfA2).
unlt(english .volume.ftA 3).
unit (engllsh.volunie.floz).

unit_code(si.2.rnt).
unit code(sl.3.cm).
unit_code(sl.5.krn).
unit code(st. 7.mni).

unit_code(engllsh. I1 .ft).
unit..code(english. 13.1n).
unit-code(english. 1 7.yd).
unit-code(engllsh. 19.ml).

unit -code(si,23.kg).
unit..code(st. 29.gm).
uniz -_code(sl.3 1.mg).
unit code(sl.37. tons).
unit-code(sl.4 1.ltons).

unit_code(engllsh,43J1b).
unit-code(engish.47oz).
unit-code(english .53.stons).

unit codcL,6 1.sec).
unit codeL.67.hr).
unit-codeL-,7 1 .xin).
unit codeL. 73. day).

unit_codeL83.degK-Q.
urd1t.codeL.89.degC).
unit_codeL_.9 1.degF).

unit codeL. 101 .dollars).

/* The convention is to state across-system laws
only for the base unit in each system
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e.g. between mt and ft. but not cm and ft.
within system conversion is done using the conversion
laws with the base unit as the meeting point /

/. Base conversion laws (ACROSS systems) ./
base convlawimt = 0.3048 0 ft).
baseconvlaw~kg - 0.45359237 Ib).

/* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 5/

/* Conversion from base unit of a system to other unit in it /
/* The query we are interested in answering is

C = ? F = ? in: convlaw(U1 = C + F U2). "/
/* length "/
convlawlmt = 100 "cm).
convjlaw(mt = 0.001 * km).
/. convlaw(mt = 1609.344 * mi). /
conv-lawtmt = 1000 * mm).

/0 length */
conv-lawift = (1/3) * yd).
convlaw(ft = (1/5280) "mi).
conv_law(ft = 12 • in).

/" mass 0/

convjlaw(kg = 1000 * gin).
conylawfkg = 1000000 * mg).
convlaw(kg = (1 / 1000) * tons).
conv-law(kg = (1/1000) O Itons).

/" mass "/
convlaw(lb = 16 • oz).
convlaw(lb = (1/2000) • stons).

/ tine */
convjlawlsec = (1/60) min).
convlaw(sec = (1/3600) * hr).
conylawtsec = (1/86400) * day).

/0 temperature ./
conv-law(degK = 273.15 + degC).
convjawdegF = 32 + (9/5) " degC).
convjawtdegC = (-32 * 5 / 9) + (5/9) • degF).

convlaw(MtA3 = 1000 • It).
conv-law(gal = 4 * qt).

convjawiU - 0 + I * U).
conv-law(UAA = 0 + Factor * (U2AAJ):-

convlawU 1 - Factor * U2).
Factor Is pow(FA).

/ %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% /

/4 For converting betweer ise unit "/
conviaw(BU1 -= 0 + F12 * J2) :-

base-sonv-law(BUI = F12 * BU2).
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conv-aw(BU 1 = 0 + FP12 0BU2)
base convjlaw(BU2 = F2 1 *BUM1)

P12 is 1 / P21.

conv-lawfBU1I = FP12 + 1 * BU2)
base -conv-jaw(BU1I = F12 + BU2).

convlaw(BU 1 = FP12 + 1 * BU2):
base conv-iaw(BU2 = F21 + BUl).

F12 is (- 1) - P21.

/* Within system: base unit to other unit*/
conyIaw(BU = 0 + F 0 U):

conv law(BU = F 0 U).
cony-law(BU = C + 1 * U):

conv-law(BU = C + U).

/* For arbitraiy conversions (within or across systems) a

cony-law(U 1 = 0 + F 12 * U2):
u nlt(S 1. ,Dimension. U 1).
base- u nitiSi 1.Dimension. BU 1),
conv-lawIBU1 = 0 + Fl * Ul),

unit(S2 .Dimension.U2).
base..unit(S2. .Dimension. BU2).
conv-awfBU2 = 0 + F2 a U2).
conv-aw(BU 1 = 0 + BF 12 0 BU2).
F12 is P2 -BF12 / Fl.

/* For arbitrary conversions (within or across systems) *

convaw(ULI = F 12 + 1 *U2):
unit(S 1, Dimension. U 1).
base unit(S 1 .Dimension. BU 1).
conv-law(BU1 = Fl + 1 0 Ul.

unlt(S2.Dimnenslon.U2).
base-unlt(S2.Dlmenson._.BU2).
conv-awIBU2 = F2 + 1 * U2).
conv-aw(BUl = BF12 + 1 * BU2).
F12 Is P2 + BF12 - Fl.

unit-.allas(meters~mt).
unlt..alias(kilograrns.kg).
unit-alias(seconds.sec).
unit-alias(axnperes.amnp).
unit-.allas('degree Kelvln',degK).
unit-alias(candela.cd).
unit..alias(mole.mol).
u nit alias( dollars. dollars).

P 1ovr armft o nt
convert(Number. Units 1 ,Number.UnItsl) :!

convert(Number2 .Units2. Numberl1 Units 1):
conv law(Units2 = F I + P2 *Un.itsl)M
Number 1 is FlI + (P2 a Number2).
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APPENDIX F

LAWS FOR DMENSIONAL COF3ISTENCY

1171

ILaws for dimensional consistency of functional and conditional expressions./

/* dim vaid(M, Y =:Phi <-- Psi): unlts(M. Y. UM)
units(M. Phi. U2).
unlts..eq(U 1, U2. true). .

dim..valid(M .Y =:Phi) :- unlts(M.Y.U 1). units(M.PhI.U nits~..eq(U 1 .U2. true).

dirn~yalid(M. A+B) :-unlts(M. A. DA).
units(M. B. DB).
units-eq(DA. DB. true).

dirr~valid(M. A-B) :- units(M. A. DA),
units4M. B. DB).
units,_eq(DA. DB. true).

diin-yalid(M. M*B) :- dilm -alid(M. A).
dim..yalid(M. B).

dim -valid(M. A/B) :- dim -yalid(M. A).
dm-vaId(M. B).

dim vad(M. A AB) :-dim -vaild(M. A).
dimyvalid(M. B).

dim valid(M, pow(A. B)) lim-valid' A).
dim-val-id(M. B).

dIm-valid(M.sumt_, X)) :-dIm vaIldjM. Ml.

dimyvad(M.prodL, M)- dim-valld(M. Ml.

dim-valld(M. M-B) : - unlts(M. A. DA).
units(M. B. DB).
units..eq(DA. DB. true).

units(M. B. DB).
units.eq(DA. DB. true).

dim-valld(M. A>B) :- unlts(M. A. DA).
units(M. B. DBIO,
units.eq(DA. DB. true).

dim valid(M. A=<B) - unitsC A, DA).
unlts(M. B. DB).
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unitseq(DA. DB, true).

dim-valid(M. A>=B) :- units(M. A. DA).
units(M. B, DB).
unitseq(DA. DB, true).

dim valid(M. Exp, false).

/* Laws for Computing derived units */

unlts(M. A+B. UAJ :- units(M. A. UA).
units(M. B. UB),
units-eq(UA, UB. true).

units(M, A-B, UA :- unlts(M, A, UA)
units(M. B. L 3).

unitseq(UA. UB, true).

units(M. A'B, U) :- unlts(M. A. UA).
units(M. B, UB).
simplify(UA*UB. U).

unilts(M. A/B. U) :- unlts(M, A, UA).
unts(M. B. UB).
simplify(UA/UB, U).

unlts(M. AAB. U) :- unlts(M. A. UA),
unts(M. B. UB).
simplify(UAAUB, U).

units(M. pow(A, B). U) :- unlts(M, A. UA).
unlts(M, B. UB).
simplify(UAAUB. U).

unlts(MmaxLX), U) :- units(M. X. U).

units(M.minLX). U) :- unlts(M. X. U).

units(MsumLX). U) :- units(M. X. U).

/* unlts(M, prodL.X) U) :- unlts(M. X. U). requires multiplication of each 0/

units(M. Local var, U) :- localvart(_, M. Localvar. _, U).

unitseq(A. A. true).

/* If any of the definitional expressions is dimensionally invalid, the model is not d.c. /

/* If a model is d.c. the second argument of the dimvalidjnodel predicate will be 'true'.
If it is not, the second argument will contain the invalid expression. */

dim.valld-model(Model, DeIE) :- defE(Model, -. DefE).
not(dim_yald(M. DefE)). !.

/* If any of the conditional expressions is dimensionally invalid, the model is not d.c. */
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dim vald model(Model. CoriE) defE(Model. -,ConE),

not(diin-.valid(M. ConE)), !

/* Else it must be OK 0/

dim valid-.model(Model, true).
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APPENDIX G

A NUMERIC METHOD

/* numeric.p /
/* 12 Feb 1991/
/* Get numeric value for derived units. 0/
/* Assume database of prime values for fundamental units*/

/* numeric[Dimensionalexpression. Numericvalue) */

numeric(Exp_ 1*Exp_2. Numeric-value) -

numeric(Expl, N I).
numeric(Exp_2. N2).
Numeric_value is N1IN2.

numeric(Expl/Exp_2. Numeric-value)
numerlc(Expl. NI),
numeric(Exp_2, N2),
Numeric-value is N1/N2.

numeric(Exp-l+Exp_2, Numericvalue) -

numeric(Exp_l. NI),
numeric(Exp_2. N2).
Ni = N2.
Numericvalue is Ni.

numeric(Exp-l-Exp_2, Numericyalue)
numeric(Exp_l. Ni).
numeric(Exp_2, N2),
N1 = N2,
Numericvalue is N1.

numeric( ExplAExp_2. Numericvalue)
numericExp_l. NI).
numeric(Exp_2. N2).
N2 =0,
Numericyvalue is NI.

numeric(Unit. Prime) :- unltcode(System. Prime, Unit).

numericKC 1):- numberXO.
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APPENDIX H

A LIST PROCESS

/. multiply~jist([AI I [BII. Answer)./
xnultiply-list([ 1. 1).

multlply_1lst(AI BI. Answer)
multiplyjist(A. X).
xnultlply-fist(B. Y),
Ar *er is X*Y.

multiply_.. A. Ans)

Ans, is A.

I. dlvidejlst([AI I JBIJ. Answer)./
divide-list([j. 1).

divide-ist([A IB). Answer)-
divide-listWA X).
divide-list(B. Y).
Answer is X/Y.

divide list(A Axis) :
nuinberjA),
Ans is A.

I'add list *
/* add-ist(IIAI I [B. C. DlI. Answer).
/* add..list(IAI [B. C. DII. Answer)./
addjlist(f 1. 0).

add-list(A IA B1. Answer)
add..jist(A. X).
addjlist(B. Y).
Answer is X+Y.

add-list(A. Answer)
numberA).
Answer is A.

I, subtractjtstOIIAI [B)). Answer). *
subtractjlst(J. 0).

subtract-listIAlI BI. Answer)

subtract-list(B. Y).
Answer is X-Y.
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subtractjist(A, Ans)
nurnber(A).
Axis is A.
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APPENDIX I

BEAM MODEL

/0 model(modeLnarne. description). */
/* model-sourcetmodeLname. model-reference)./
/0* variable(varlablenazne. description). 0 /
/* var..quiddity(variable..name. type-of...quantity. quiddity. storage-..units). /
/* defE(model-.narne. expression..nuriber. definitional expression). 0/
/6 local var(model-name. varlable-r. -ie, local name, <exo or endo>. units).
/0* setDef~model-name. index-nme. escription'. index..range). ./
P indexvar(index, modelname. 'desc nption'. itype(index), index..rangeJ).*/
/0 In-model(model..naxne. use(model -name, local_variable).

to-.eval(local -variable)). * /
P run-,report(model -name. IvariablejIst). 6/
/0 scenario(model-name(scenaro-.number). description). ./
/0* m-.s -paiiixnodel-name. modelname(scenario.number)). 0
/. datum(vartable~name. modeLname(scenario..number). data).

/*Variable base 0/

var-quiddity(allowable~shear..stress. mass/area. *. kip/ inA2).
variable(allowable..shear _stress. 'Allowable shear stress of beam').

var..quiddity(actual..deflection. length. *. in).
varlable(actual..deflection. 'Actual deflection of beam').

var-quiddty(allowable.deflection. length. 0, in).
variable(allowable-deflection. 'Al(-- -Able :!,flection of beam').

var-quiddity(beam~depth#i, length. 0, U.
var(beam...epth#i. ('Depth of beam. 11).

var..qulddityibending..stress, mass/area. * klp/ inA2).
variable(bending-stress. 'Bending stress').

varquiddty(computed...sctonjnodulus, volume. *. lnA3).
variable(cormputed..section..modulus. 'Computed section modulus from beam

formula S=M/Fb').

varquiddty(computed.shear..stress mass/area. *, kip/in"2AU
variable(cornpute~shear..stress, 'Computed shear stress').

var..qulddltytdepth..solution. length. *. in).
variable(depth-.solution. 'Depth of wide flange solution').

var~quiddity(length.o..beam, length, 0. ft).
variable(length of beam. 'Length of beam').
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var..quiddity(max..vertical -shear. mass. *. ip).
varlable(max-.vertical-.shear. 'Maximnum vertical shear of beam').

var-qulddity(momeflt-of beam. massilength. *. kipft).
variable (moment.of-.beaxn, 'Moment of beam)I.

var-quiddity(reaction. mass. *. kip).
vartable(reaction. 'Reaction of beam').

var..quiddity(section..modulus#i. volume. *. in A3).
variable(sectlon-moclulus#i. I Table section modulus'. 11).

var..quiddity( unifoi-mly-.distrbuted-load. mass/length. *. kip /ft).
variable(uniformly..distributed-load, 'Uniformly distributed load').

var..quiddity(w-.shape#i. , .. a J.
varlable(w..shape#i. [Wide flange shape'. iI).

var-quiddity(web.,thickness#i. length.*. in).
variable(web-thickness#i. ['Web thickness of beam'. ii).

var-.quiddity(web..thickness.,solution. length.*., in).
variable (web thic kness-sol ution. 'Web thickness of wide flange solution').

var..quiddity(weight-.ofjload. mass. *. kip).
variable (we ight..ofjload. Weight of load').

var...qulddlty(wlde~flange..solution. _. a, J.
vaiable(wde..flange..solution. 'Wide flange solution').

model(beam. 'beam: Model for selection of simple span beams.').
modelsource(beam. 'Parker: Simplified Design of Structural Steeed.
ms-paiibeam. beamf 1)).

/a stepj1: Compute weight '

model(stepjl. 'Compute weight of floor load.').
modelI-source(stepj lParker').
m-.s,,pairjstep.. . beam( 1).

localyartweight,,.ofjoad. step.. . cap.,W. endo. kip).
localyarilengtho..bearn. step...1 cap_,L. exo. ft).
local varjuniformly-.dstributed-load. stepjl. w. exo. klp/ft).

P, weight,,of load(lp) = uniformly-.dstributed_load (kip /ft) * length of beam(ft) a

defEstep . 1. cap,,W -: w 0cap..L).
in_model(step..1. use(step.. 1 cap_,W). to~val(cap_WI).

run..report(step1. (cap_.W. w. cap..LI).
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/0 step_2: Compute reactions 0/
model(step-.2. 'Compute beam reactions.').
model -source(step_.2.'Parker').
m-s..pair(step-.2. bearn( 1)).

local-var(reaction. step_2. capPR endo, kip).
local-var(max_vertical-shear step..2. cap_.V. endo. kip).
localvar(weight_of-load. stecp_.2. cap-.W. exo, kip).

/* reaction(kip) = (weight-of load(kip) / 2) '
defE(step-.2. 2 -1. cap-.R =:(cap_W / 2)).
/0 max..vertlcal..shear(klp) = reaction(kip) *
defE(step-.2. 2-2. cap-.V =:cap-.RJ.

in..model(step-.2. use(step..1. cap-.W]. to-eval(capW)).
in_model(step-.2. use(step-2. cap_.R). to-.eval(capR)).
inmodel(step_.2. use(step_.2, cap_.V). to..eval(cap)).

run..report(step..2. jcap..R. capyl]).

/. step_3: Compute moment ./
model(step-.3. 'Compute moment.').
model -source(step_3.'Parker').
m-s-par(step_.3. beam(1)).

localvaimoment.of~beam. step..3. cap..M. endo. kip'ft).
local~yarilengtfr~of beam. step..3. cap_.L. efto. ft).
localvyariweight_of-load. step_.3. cap..W. exo. kip).

/* moment-.of..beam(kip~ft) = (weight..of-load(kip)) * length.of..beaxn(ft))/ 8/
defE(step..3. 3. cap-M =: (cap..W * cap_.L)/8).

in,.model(step_.3. use(step-1. cap-.W). to-eval(cap_.W)).
ln..model(step_.3. use(step-2, cap..R. to-eval(cap-RJJ.
in .model(step..3. use(step..2. cap3T). to eval(cap)).
in..model(step..3. use(step-.3. cap-.M). to-.eval(cap-.M)).

run-r.eport(step..3. (cap..MI).

/0 step_.4: Compute section modulus/
model(step.4. 'Compute section modulus').
model .source(step_,.'Parker').
m..s..pairtstep-.4. bean( 1)).

local...acomputed..sectlonjnodulus. step_4. cap-.S. endo. inA 3).
local.yarjmoment..of - eam. step-4. cap_.M. exo. kipft).
local-vaibending-.stress. step-4. cap-.Fb. exo. kip/in AU)

/0 computed..sectuon..moduius(inA3) = (moment..of.beam~kipft 0 (12
in/ft)/bending-stress(kip/in AU) ./
defElstep..4. 4. cap-.S -: (capy * 12) / capjb).

in...model(step_4. use(step.. 1. cap)Afl. to_eval(cap_W)).
in..model(step_4. use(step-.2. capR). to..eval(capRj).

in -model(step-.4. use(step-3. capM). to-.eval(cap-.M)).

run.,report(step_4, [cap-.S. ca ._bj).
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1' step-.5: Select beam ./
model(step-.5. 'Select beam using computed section modulus').
mode Iso urce (step..5.'Parker').
n~spar(step.5. beam( 1)).

% local-varfsolutlon_list. step-.5, [listl. endo. J.
local-vattest variable. step-.5. test. endo. J.
locai..var(wide-.flange-.solution. step_5. w-sol. endo. J.
local - ar(depth..solutlon. step_5. d. endo. in).
local -var(web-thickness-solution. step_.5. tw. endo, in).
local_var(compute&.section-modulus step..5. capS. exo. in A3).

local-vaijsection_modulus. step-.5. smod. exo. in A3).
local-var(w..sliapefl. step_5. shapefi. exo. J.
local_varlbeam-.depth#l. step_.5, depthfi. exo. In).
local var(web thickness#i. step_5. thick#l. exo. in).

% defE(step-.5. 5-1, list=: vectoriiIn a -list. I <-- s-mod#i >= cap-.S)).
% defE(step..5. 5-2, w-sol =:min-lst(list)).
defE(step_.5. 5-3, wsol =:shape# 15).
defE(step-5. 5-4. d =:depth# 15).
defE(step-.5, 5-5, tw=: thlck# 15).

%setef(step..5. a-list. 'Possible beam choices'. 1... 15).
% indexvar(i. step.5. 'Beam choice index'. Iti n a ist]).

indexvar(Ij. step 5, 'Beam choice index', linteger i) 1... 151).
In-model(step_;.. use(step_.4. cap..S). to-.eval(cap..S)).
in...model(step-.5, use(step_5. w_sol). to-eval(w-sol)).
in_model(step..5. use(step-.5. d). to-evald)).
in-model(step_,5. use(step_5. tw). to-eval(tw)).

% in-.model(step-5. use(step_5. list). to..eval(list)).
in -model(step_5. use(step-.5. test), to-eval(test)).

run-.report(step_5. (w_sal. d. twi).

/* Step-.6: Check shear stress */
model(step..6. 'Check shear stress').
modelI-source (step_.6.'Parker').
m.s-pair(step-.6. beam( 1)).

local..varfcomputed..shear..stress. step..6. fv, endo. kip/in A2).
localyarshear-check. step...6. shear. endo. 3.
local_varzjallowable.shear~stress. step_.6. cap-.Fv. exo. kip/in A2).
local -var(max..verticalshear step-6. capy, exo. kip).
localvarideptfr~solution. step_.6. d, exo. in).
localyar(webthickness.solution. step_.6. tw. exo. in).

/*computed-shear Stress(kip/in A2)=xnax vertical-shearjklp) /(depthin) ' thlck(in)).*
defE~step-...6 6- 1. fv =:cap... / (d * tw)).-
/1. if allowable ..shear.stress~ip/in A2) >= computedshea...stressfkp/In A2) then
(shear-.check - ok) */
defE(step_.6. 6-2. shear =:(ok <-- cap_.Flv >= fv)).

inn.iodel(step_.6. use(step..2. capV). toeval(cap)).
In..model(step_.6. use(step_5. d). to..eval(d)).
injnodel(step_.6. use(step-5.. fv). to-eval(v)).
in...rodel(step-.6. use(step_.6. shear). to..eval(shear)).

runj-eport(step.6. [shear. fv. capFvl).
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/0 Step..]: Check deflection
model(step-.7. 'Check deflection').
model -source(step-7.'Parker').
m-s...palr(step_7. beaxn(l1)).

local..yar(allowable deflection. step_7. allow, endo. in).
local-varfactual-deflection, step_7. actual. endo. in).
local-var(deflection-check, step_7. defi. endo. J.
local-var(length_of beam. step-7. cap_L. exo. ft).
local -var(depth~solution. step-7. d. exo. in).

P* allowable deflecUon(in) = (length-of beaxn(ft) *(12 ln/ft))I 360)
defE(step_7. 7- 1. allow =: (capL 0 12) / 360).
P* actual deflection(in) =(.02483(inA'I2/ftA2) 0 length of beam(ftA2) /d(in) ~
defE(step_7. 7-2. actual =:(0.02483 4 cap...LA2) / d).
/0 If actual deflection(in) =< allowable-deflection(in) then (deflection-check =ok) a

defE(step-7. 7-3. defi =: (ok <-- actual =< allow)).
in..Model(step-.7, use(step..5. d). to..eval(d)).
in..model(step_7. use(step-7. allow). to-.eval(allow)).
in-model(step7. use(step-7. actual). to-.eval(actual)).
in -model(step..7. use(step-7. defl). to-eval(defl)).

run-report(step-7. Idefl, actual. allow]).

scenarto(beaxn(l), This is a test scenario of the beam model).

datum(allowable-.shear stress. beam( 1), 14.5).
datum(bending...stress. bean( 1). 24.0).
datum(length-.of-beam. beam( 1). 10.0).
datum(uniformlydlstributedjload. bean( 1). 2.2).

/ Table 1 -1. Parker. Simplified Design of Structural Steel

datum(w...shape# 1. beam( 1). w10_89).
datum(w..shape#2. t tam( 1). w1 0_60).
datum(w-shape#3. beam( 1). w10-49).
datum(wshape#4. bean( 1). wi 035).
datum(w..shape#5. beam(1). wlO..39).
datum(wshape#6. bean( 1). w10_33).
datum(w-shape #7. bean( 1). w1 0-.25).
datum(w.,.shape#8. beam( ii. w10-21).
datum(w..shape#9. beam( 1). w83.7).
datum(w..shapc# 10. beamf 1). w8_40).
datum(w..shape# 11. beamfil). w8_31).
datum(w...shapc# 12. bean( 1). w8_28).
datum(w...shape# 13. beaxn(1). w8_.24).
datum(w..shape# 14. beam( 1). w8_.20).
datum(W..shape#15. beamWl. w8_17).

datum(sectionjnodulus# 1. beai( 1). 99.7).
datum~sectionjnmodulus#2, beam( 1). 67. 1).
datum(section.,modulus#3. beam( 1). 54.6).
datum(sectionjnodulus#4. beam(l). 49. 1).
daturn(sectlon-modulus#5. bean( 1). 42.2).
datum(sectionjnodulus#6. beam( 1). 35.0).
datum(sectionimodulus#7. beam( 1). 26.5).
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datum(sectlon -modulus#8, bean( 1). 21.5).
datum(section-modulus#9, beam( 1). 60.4).
datum(sectjon-modulus# 10. beam( 1). 35.5).
daturn(section-modulus# 11. bean( 1), 27.4).
datum(sectlon-modulus# 12. bean( 1). 24.3).
datum(section -modulus# 13. beam( 1). 20.8).
datum(sectionmodulus# 14. beam( 1). 17.0).
datuni(section-modulus# 15. beam( 1). 14. 1).

datum(beamndepth# 1. beam( 1). 10.88).
datum(beamn.depth#2. beam(1). 10.25).
datum(beam..depth#3. beam( 1). 10.00).
datum(beam-.depth#4. bean$ 1). 10. 12).
datum(beam-.depth#5. beaxn(1). 9.94).
datum(beaxn- depth#6. beaxn(l), 9.75).
datum(beaxn_depth# 7. beam(!1). 10.08).
daturn(beam...depth#8. beain(1). 9.90).
datum(bearrndepth#9. beani(1). 9.00).
datum(beam-.depth# 10. beam( 1). 8.25).
datum(bean..depth#1 11. beain(l). 8. 00).
datum(bean..depth# 12. beam(1). 8.06).
datum(beazm.depth# 13. beaxn(1). 7.93).
daturn(beam~depth# 14. beam(1). 8.14).
datum(beamndepth# 15. beai( 1). 8.00).

datum(web-thickness# 1. beam( 1). 0.615).
datum(web-thickness#2. beai( 1). 0.415).
daturn(web-thickness#3. beam( 1). 0.340).
datum(web-thickness#4, beam( 1). 0.350).
datum(web-thickness#5. beai( 1). 0.318).
datum(web-,thickness#6. beam(D1. 0.292).
datum(web-thickness# 7. bean4 1). 0.252).
datum(web-thickness#8. beam(1). 0.240).
datum(web-thickness#9. bean( 1). 0.575).
datum(webjthickness# 10. beam(1). 0.365).
datum(web..thickness#1 11. bean( 1). 0.288).
datuni(webthfickness# 12. beam( 1). 0.285).
datum(web-thickness# 13. bean( 1). 0.245).
daturn(web-thickness# 14. bean( 1), 0.248).
datum(web-tickness# 15. beam( 1). 0. 230).
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APPENDIX J

SAMI)LE OUTPUT

A. COMPUTE WEIGHTr

TEFA>run(stepjl, bean( 1)).

cap W=22.0 kip w=2.200000 klp/ft cap..L=10.0 ft

EL COMPUTE REACTIONS

T;' 'A>>run(step_2. beamnt )).

cap_.R= 11.0 kip capy= 11.0 kip

C. COMPUTE MOMENT

TEFA>run(step-3. bean( 1)).

capM=27.500000 lpft

D. COMPUTE SECTION MODULUS

TEFA>>run(step_.4. bean( 1)).

cap..S= 13.750000 in A3 capFb=24.0 kip/inA2

E. SELECT BEAM

TEFA>>run(step_.5. beam( 1)).

Wsol=w87 d=8.0 in tw=0.230000 In

F. CEK SM~A

TEFA>>run(step_.6. beam( 1)).

shear--ok fv=5.978260 lp/inA2 cap..Yv=14.500000 lp/ln A2

TEFA>>run(step_.7. bean( 1)).

defl-ok actual=O.310375 in allow=-0.333333 in
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APPENDIX K

DESCRIPTION OF COMPUTER PLATFORM

A. SYSTEM DEVELOPMENT INFORMATION

1. Computer platform: Macintosh Ilsi.

2. Operating system: 6.07.

3. Processor: Motorola 68030. 20 mHz.

4. RAM: 5 megabytes.

5. Hard disk storage: 80 megabytes.

B. SYSTEM

1. Computer platform: Mac II series.

2. Operating system: 6.05 or later.

3. RAM: 4 megabytes. minimum.

4. Hard disk: Highly desirable.

C. PROGRAMMING ENVIRONMENT

1. Model Management System: TEFA, version 1. 10.

2. Programming language: Advanced AI. Systems Prolog 2.0g. Prolog is the

embedded language used by TEFA.
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